

Fig. 8
In a theme park ride, a capsule C moves in a vertical plane (see Fig. 8). With respect to the axes shown, the path of C is modelled by the parametric equations

$$
x=10 \cos \theta+5 \cos 2 \theta, \quad y=10 \sin \theta+5 \sin 2 \theta, \quad(0 \leqslant \theta<2 \pi)
$$

where x and y are in metres.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{\cos \theta+\cos 2 \theta}{\sin \theta+\sin 2 \theta}$.

Verify that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $\theta=\frac{1}{3} \pi$. Hence find the exact coordinates of the highest point A on the path of C .
(ii) Express $x^{2}+y^{2}$ in terms of θ. Hence show that

$$
\begin{equation*}
x^{2}+y^{2}=125+100 \cos \theta \tag{4}
\end{equation*}
$$

(iii) Using this result, or otherwise, find the greatest and least distances of C from O .

You are given that, at the point B on the path vertically above O ,

$$
2 \cos ^{2} \theta+2 \cos \theta-1=0
$$

(iv) Using this result, and the result in part (ii), find the distance OB. Give your answer to 3 significant figures.

2 Fig. 6 shows the arch ABCD of a bridge.

Fig. 6
The section from B to C is part of the curve $O B C E$ with parametric equations

$$
x=a(\theta-\sin \theta), y=a(1-\cos \theta) \text { for } 0 \leqslant \theta \leqslant 2 \pi
$$

where a is a constant.
(i) Find, in terms of a,
(A) the length of the straight line OE,
(B) the maximum height of the arch.
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ.

The straight line sections AB and CD are inclined at 30° to the horizontal, and are tangents to the curve at B and C respectively. BC is parallel to the x-axis. BF is parallel to the y-axis.
(iii) Show that at the point B the parameter θ satisfies the equation

$$
\sin \theta=\frac{1}{\sqrt{3}}\left(\begin{array}{ll}
1 & \cos \theta
\end{array}\right) .
$$

Verify that $\theta=\frac{2}{3} \pi$ is a solution of this equation.
Hence show that $\mathrm{BF}=\frac{3}{2} a$, and find OF in terms of a, giving your answer exactly.
(iv) Find BC and AF in terms of a.

Given that the straight line distance AD is 20 metres, calculate the value of a.

3 A curve has carlesian equation $\mathrm{y}^{\mathbf{2}}-\mathrm{x}^{2}=4$.
(i) Verify that

$$
\begin{equation*}
x=t-l^{1} \quad y=t+\frac{1}{t^{\prime}} \tag{2}
\end{equation*}
$$

are parametric equations of the curve.
(u) Show lhat $\left.\frac{\mathbf{d y}}{d \times}=\frac{(\mathbb{t}-I)(r}{12+1}+1\right)$. Hence fimd the coordinates of the staionary points of the curve.

4 The parametric equations of a curve are

$$
x=\sin \theta, \quad y=\sin 2 \theta, \text { for } 0 \leqslant \theta \leqslant 2 \pi .
$$

(i) Find the exact value of the gradient of the curve at the point where $\theta=\frac{1}{6} \pi$.
(ii) Show that the cartesian equation of the curve is $y^{2}=4 x^{2}-4 x^{4}$.

5 A curve is defined parametrically by the equations

$$
x=\frac{1}{1+t}, \quad y=\frac{1-t}{1+2 t} .
$$

Find t in terms of x. Hence find the cartesian equation of the curve, giving your answer as simply as possible.

6 A curve has parametric equations

$$
x=\mathrm{e}^{2 t}, \quad y=\frac{2 t}{1+t} .
$$

(i) Find the gradient of the curve at the point where $t=0$.
(ii) Find y in terms of x.

